US009215093B2

a2 United States Patent

Han et al.

US 9,215,093 B2
Dec. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54) ENCODING PACKETS FOR TRANSPORT
OVER SDN NETWORKS
(71) Applicant: Futurewei Technologies, Inc., Plano,
TX (US)

(72) Inventors: Lin Han, San Jose, CA (US); Renwei
Li, Fremont, CA (US); Katherine Zhao,
San Jose, CA (US); Qianglin Quintin
Zhao, Boxborough, MA (US)

(73)

Assignee: Futurewei Technologies, Inc., Plano,

TX (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 87 days.

@
(22)

Appl. No.: 14/043,048

Filed: Oct. 1, 2013

(65) Prior Publication Data

US 2014/0119367 Al May 1, 2014

Related U.S. Application Data

Provisional application No. 61/720,326, filed on Oct.
30, 2012.

(60)

Int. Cl1.
HO4L 12/28
HO4L 12/46
HO4L 12/721
U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2013.01)
(52)
HO4L 12/4633 (2013.01); HO4L 45/38

(2013.01); HO4L 2212/00 (2013.01)

1500
Y
102

104(a)

(58) Field of Classification Search
USPC 370/235,389, 353, 392, 395.21, 395.5,
370/395.51, 395.52, 465; 726/15
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,035212 B1* 4/2006 Mittaletal. 370/230
2011/0261812 Al* 10/2011 Kinietal. 370/389
2013/0163475 Al* 6/2013 Beliveauetal. 370/257

FOREIGN PATENT DOCUMENTS

WO 2013130320 Al 9/2013

* cited by examiner

Primary Examiner — Phuongchau Ba Nguyen
(74) Attorney, Agent, or Firm — Conley Rose, P.C.; Grant
Rodolph; Brandt D. Howell

&7

An ingress node in a Software Defined Network (SDN) com-
prising a receiver for receiving a data packet, a processor
coupled to the receiver and further configured to obtain the
data packet from the receiver in a transport protocol agnostic
manner, and encapsulate the data packet in an SDN packet
header, wherein the packet header comprises SDN flow-spe-
cific information provided by an SDN controller, and a trans-
mitter coupled to the processor and further configured to
transmit the encapsulated data packet across a single SDN
toward an egress node in the SDN.

ABSTRACT

20 Claims, 10 Drawing Sheets

104(b} 104(c)

] SDN CONTROLLER ‘

NETWORK |
NODE

NETWORK NETWORK
NODE NODE

Collect Topo Info

1502

Assign Node ID

1504

Collect Router Info

1506

Send Serv. Req.
1508

Assign Flow 1D
R Caloulate Hest Path
1510 ~J Form Tables

Install Tables

1512

1514 Encapsulate Packet

1516

J SendiAlong Path

U.S. Patent Dec. 15, 2015

100

NETWORK
NODE

104(a)

END NODE
106(a)

Sheet 1 of 10

US 9,215,093 B2

NETWORK
CONTROLLER
102

i
i
:
1
[}
¥
i ~
]
!
!
i
i
i

NETWORK
NODE

104(b)

FIG. 1

CONTROL PATH

—— DATA PATH

NETWORK
NODE
104(c)

END NODE
106(b)

U.S. Patent Dec. 15, 2015 Sheet 2 of 10 US 9,215,093 B2

200

Network Element

230

Processor - 234
220, \ 250

210 210
‘ / Content Aware / [

< Tx/Rx Module . >

‘ Conference [
235 __—1"1 Control Module

\ J

Downstream Upstream

Ports Memory Ports

FIG. 2

U.S. Patent Dec. 15, 2015 Sheet 3 of 10 US 9,215,093 B2
300
ETHERNET VLAN NEW SDN HEADER ARP/TP/MPLS/MAC
302 304 306 308
FIG. 3

400

¢

CTL FLOW ID

402 404

FIG. 4

U.S. Patent Dec. 15, 2015 Sheet 4 of 10 US 9,215,093 B2

500

e

500 RECEIVE SERVICE
REQUEST

504 —| OBTAIN TUPLES FROM
SERVICE REQEST

506 LOOKUP OR ASSIGN
A FLOW ID

508 TRACK FLOW ID
ASSIGNMENTS

510 RETURN FLOW ID TO POOL
WHEN NO LONGER IN USE

Finish

FIG.5

U.S. Patent Dec. 15, 2015 Sheet 5 of 10 US 9,215,093 B2

600 6(14
p (\
CTL EBR ID SCID NETABS
602 606 608 610
FIG. 6
700
"
B 1 2 3

12345678981 23456789812345678941
T e e T T S
| oL | EBR/MTree ID | 5C ID | MetsbsT | MetAbsID|
+-+-+-+-+-+-+-+-+-+[+-+-+-+-+-+-+-+W+-+-+-+-+-+-r-+-+-+~+W+-+-+-+

702 706 708 712 714

FIG.7

U.S. Patent Dec. 15, 2015 Sheet 6 of 10 US 9,215,093 B2

800
N

@ 1 2 3
812345687899 12345678981234567830981
e E S o e N st SO0 (O

802 —14 Tt | EBR/MTree ID | sC ID |HetdbsT]|

L T S o N e T B e e e T
[u| NetabsID | \ [

i s T e e e o 810
T 806 808
812
FIG. 8
900
é\ 1 2 3

212345678981 2345878096812345887 8881
e T s S T S s S e e S B T T S S S S

902 ——| CTL |} EBR/#iTree ID | SCID [etabsT|
e s e L e T B s B S o T e
|M| Topo ID | O HetdbsID | T T
R s e e L e e S 0 Rttt ot S . 910
[[906 908
914 912

FIG. 9

U.S. Patent Dec. 15, 2015 Sheet 7 of 10 US 9,215,093 B2

1000
N

2 1 2 3
8123456789812 3456789812345678981
S et S S e R

1002—] €T | EBR/MTree ID — 1006
e o S s T o T S S s T ot Tt S S S
1008—1 SC I I
e o T S i T e Tt S S ot Tt T T o T =
| HetsbsT | HetabsID |

+_+-+f+_+_+_+_+_+_+_+-+-+_+_+_+-+_+_+-+-+-+_+_T_+_+_+_+_+-+-+_+_+

1010 1012

FIG. 10

1100

@ 1 2 3
#1 2345878598123 456789812345868789581
T e B S e

12— 1. | EBR/HMTree ID — 1106
e S s T S S S L B T S R o ot S SR S
1108— SC ID |
T T e T e St e
| HetahsT | Topo 1D | O NetbsbsID |

+_+-T_+_+_+_+_+_+_+_+_r_+-+_+—+_+_+-+_+_+_+_+_+_T_+_+_+_+_+-+_+_+

1110 1114 1112

FIG. 11

U.S. Patent Dec. 15, 2015 Sheet 8 of 10 US 9,215,093 B2

1200
N

@ 1 2 3
8123456783981 23458687 83981234567 8%981
e T e s S T B e s e e ¥

1200—1} €L | EBR/MTree ID 1206
B S T T T et T o S S e 1
1208— sC ID |
S S S S S R
1206—1 5C ID | NetAbsT | NetAbsID
S A S S
| NetabsID |

+%+ﬁ%%%+ﬁ%%%%%%¢%%%%-%%%%%%%%%%%%

1212 1210

FIG. 12

1300
N

@ 1 2 3
81234567898123456789812345678981
e B s T o e e
13— CTL | EBR/HTree ID F—1306
S s T S e e s S T S S e s 2t ot
1308— 5C 1D |
s T S e s T T S s S e S L S Rt
| sC ID | NetabsT | Tapo ID 1314
s T s T T S S e s s T o S S S S S e B
| Topo ID | ety |
+_+_+T+_+_+_+_+_+_+_+-+_+_+_+_+_+_+_ e e e I B e

1314 1312

1310

FIG. 13

U.S. Patent Dec. 15, 2015 Sheet 9 of 10 US 9,215,093 B2

1400

- G

1402 RECEIVE SERVICE
REQUEST

1404 ——] CONVERT SERVICE REQESTS
TO TUPLES

1406 LOOKUP OR CONSTRUCT
A FLOW ID BASED ON
TUPLES

1408 TRACK FLOW ID
ASSIGNMENTS

1410 DELETE FLOW 1D FROM
TABLE WHEN NO LONGER IN
USE

Finish

FIG. 14

U.S. Patent Dec. 15, 2015 Sheet 10 of 10 US 9,215,093 B2

1500
102 104(a) 104(b) 104(c)
NETWORK NETWORK NETWORK
DN CONTROLLER
SDNCO 0 NODE NODE NODE
Collect Topo Info
1502
Assign Node ID
1504
Collect Router Info
1506

Send Serv. Reg.

1508
Assign Flow 1D
N Calculate Best Path
1510 / Form Tables
Install Tables
1512

1514 Encapsulate Packet >
Send{Along Path

1516

FIG. 15

US 9,215,093 B2

1
ENCODING PACKETS FOR TRANSPORT
OVER SDN NETWORKS

The present application claims priority to U.S. Provisional
Patent Application No. 61/720,326, filed Oct. 30,2012 by Lin
Han, et al., titled “Encoding Packets for Transport over SDN
Networks,” which is incorporated herein by reference as if
reproduced in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

REFERENCE TO A MICROFICHE APPENDIX

Not applicable.

BACKGROUND

Modern communication and data networks comprise net-
work nodes, such as routers, switches, bridges, and other
devices that transport data through the network. Over the
years, the telecommunication industry has made significant
improvements to the network nodes to support an increasing
number of protocols and specifications standardized by the
Internet Engineering Task Force (IETF). Creating and cou-
pling the complex network nodes to form networks that sup-
port and implement the various IETF standards (e.g., virtual
private network (VPN) requirements) has caused modern
networks to become complex and difficult to manage. As a
result, vendors and third-party operators seek to customize,
optimize, and improve the performance of the interwoven
web of network nodes.

A software defined network (SDN) is a network technol-
ogy that addresses customization and optimization concerns
within convoluted networks. SDN architecture allows net-
work administrators to have programmable central control of
network traffic without requiring physical access to the net-
work’s devices. SDNs may be Internet Protocol (IP) networks
utilizing Transmission Control Protocol/Internet Protocol
(TCP/1P) protocols. SDNs may decouple the data-forwarding
capability, e.g., the data plane, from routing, resource, and
other management functionality, e.g., the control plane, pre-
viously performed in the network nodes. Decoupling the con-
trol plane from the data plane of the network enables the
network controller to efficiently control the network traffic
through globally optimized traffic engineering and routing,
which departs from locally optimized shortest path first
(SPF). SDN may also simplify network operations or even
have the capabilities to flatten the network with extended data
routing vectors.

The extended data routing vectors in SDN can cover net-
work information from multiple Open Systems Interconnec-
tion (OSI) layers (e.g. Layer 2 (I.2) and/or Layer 3 (L.3)) for
intelligent routing purposes. A basic approach to achieve
decoupling of the network control from the network topology
and data plane is by applying globally aware and topology
decoupled software control at the edges of the network. The
assumption is that traditional topology-coupled bridging and
routing may be re-used at the core of the network so that
scalability, interoperability, high availability, and extensibil-
ity of the conventional networking protocols, such as IP net-
works, can still be maintained. Network nodes that support
SDN, e.g., SDN compliant nodes, may be configured to
implement the data plane functions, while the control plane
functions may be provided by an SDN controller. A group of

10

20

30

40

45

50

2

nodes, e.g., routers, switches, etc., controlled by a single SDN
controller may be referred to as an SDN domain.

SUMMARY

In an example embodiment, the disclosure includes an
ingress node in an SDN. The ingress node comprises a trans-
mitter, a receiver for receiving a data packet, and a processor
coupled to the transmitter, the receiver, and the memory. In
one embodiment, the processor is coupled to the receiver and
is further configured to obtain the data packet from the
receiver in a transport protocol agnostic manner, and encap-
sulate the data packet in an SDN packet header, wherein the
packet header comprises SDN flow-specific information pro-
vided by an SDN controller. The embodiment may further
comprise a transmitter coupled to the processor, with the
transmitter being further configured to transmit the encapsu-
lated data packet across a single SDN toward an egress node
in the SDN.

In another example embodiment, the disclosure includes a
method of routing a packet carried out in a network node of an
SDN. In one embodiment, the method includes receiving a
first data packet and a second data packet in a transport
protocol agnostic manner, wherein the first data packet and
the second data packet are encoded using different traffic
protocols, encoded using the same traffic protocol with dif-
ferent source or destination addresses, or encoded using the
same traffic protocol with different service requests, encap-
sulating the first data packet and the second data packet using
a packet header specific to the SDN domain, wherein each
packet header comprises a field for identifying at least one
packet-specific property and a field for identifying a flow, and
transmitting the encapsulated first data packet and the encap-
sulated second data packet across a single SDN domain to a
receiver.

In yet another example embodiment, the disclosure
includes a computer program product comprising computer
executable instructions stored on a non-transitory medium
that when executed by a processor cause the processor to
receive a first data packet and a second data packet, receive a
first data packet and a second data packet in a transport
protocol agnostic manner, wherein the first data packet and
the second data packet are encoded using different traffic
protocols, using the same traffic protocol with different
source or destination addresses, or using the same traffic
protocol with different service requests, encapsulate the first
data packet and the second data packet, wherein encapsula-
tion comprises appending a packet header provided by an
Software Defined Network (SDN) controller to the packet,
and transmit the encapsulated first data packet and the encap-
sulated second data packet across a single SDN domain
toward an egress node in the SDN, wherein each packet
header comprises a field for identifying at least one packet-
specific property and a field for identifying a flow.

These and other features will be more clearly understood
from the following detailed description taken in conjunction
with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of this disclosure, ref-
erence is now made to the following brief description, taken
in connection with the accompanying drawings and detailed
description, wherein like reference numerals represent like
parts.

FIG. 1 is a schematic diagram of an example embodiment
of'an SDN.

US 9,215,093 B2

3

FIG. 2 is a schematic diagram of an example embodiment
of'a Network Element (NE) within an SDN.

FIG. 3 is an example embodiment of an Ethernet packet
including a disclosed SDN header.

FIG. 4 is an example embodiment of an SDN packet header
generated according to the Implicit Method or Explicit
Method of packet header generation.

FIG. 5 is a flowchart showing an example method of Flow
Identifier (ID) assignment for an Implicit Method.

FIG. 6 is an example embodiment of an SDN packet header
generated according to the Explicit Method.

FIG. 7 is an example embodiment of a four-octet SDN
packet header generated according to the Explicit Method.

FIG. 8 is an example embodiment of a six-octet SDN
packet header generated according to the Explicit Method.

FIG. 9 is an example embodiment of a six-octet SDN
packet header with Topo ID present generated according to
the Explicit Method.

FIG. 10 is an example embodiment of a 12-octet SDN
packet header generated according to the Explicit Method.

FIG. 11 is an example embodiment of a 12-octet SDN
packet header with Topo ID present generated according to
the Explicit Method.

FIG. 12 is an example embodiment of a 16-octet SDN
packet header generated according to the Explicit Method.

FIG. 13 is an example embodiment of a 16-octet SDN
packet header with Topo ID present generated according to
the Explicit Method.

FIG. 14 is a flowchart showing an example method of Flow
1D assignment for an Explicit Method example embodiment
of packet header generation.

FIG. 15 is a protocol diagram showing a process for an
SDN controller to establish a mechanism for encoding pack-
ets for transport over the SDN network.

DETAILED DESCRIPTION

It should be understood at the outset that although an illus-
trative implementation of one or more embodiments are pro-
vided below, the disclosed systems and/or methods may be
implemented using any number of techniques, whether cur-
rently known or in existence. The disclosure should in no way
be limited to the illustrative implementations, drawings, and
techniques illustrated below, including the exemplary designs
and implementations illustrated and described herein, but
may be modified within the scope of the appended claims
along with their full scope of equivalents.

The disclosure includes encapsulating packets from a wide
variety of competing traffic protocols, e.g., Media Access
Control (MAC), 1P, Multiprotocol Label Switching (MPLS),
Asynchronous Transfer Mode (ATM)/Frame Rate (FR), Syn-
chronous Optical Networking (SONET), etc., using a packet
header intelligible by all nodes within the SDN for a particu-
lar data flow and/or stream. As used herein, the terms data
flow and/or stream may be defined as a series of packets
comprising data traffic from a source to at least one destina-
tion. By using the SDN flow-specific encapsulation tech-
nique, the SDN may be implemented in a transport layer
agnostic manner, or without regards to any interfacing traffic
protocols. Some embodiments utilize an explicit mode packet
header, wherein a multicast tree identifier is placed in a packet
header field. Other embodiments utilize an implicit mode
packet header, utilizing a lookup table to reference the mul-
ticast tree identifier, e.g., to optimize packet size by mapping
the identifier(s) in a database. Additionally, some embodi-
ments may identify a particular egress border router and/or
transit nodes in the header, while other embodiments do not.

10

15

20

25

30

35

40

45

50

55

60

65

4

Asused herein, a transit node or transit router may be a router
inside the SDN domain that does not have any interfaces
connecting to outside of the SDN domain. Other embodi-
ments of methods, systems, protocols, and devices are
described herein or would be readily apparent to those of
ordinary skill in the art, and are considered within the scope of
this disclosure.

FIG. 1 is a schematic diagram of an example embodiment
of an SDN network 100. The network 100 may comprise a
network controller 102, a plurality of network nodes 104, and
a plurality of end nodes 106. The network nodes 104 may
comprise switches, routers, bridges, and/or any other device
that is used to receive and/or forward data in a network. The
control path is represented by dashed lines and the data path
is represented by solid lines. System configuration, manage-
ment information, and routing/forwarding table information
may be exchanged between the network controller 102 and
the network nodes 104 via the control path. Data packets may
be received from end nodes 106 and forwarded between net-
work nodes 104 via the data path. For example, data from end
node 106(a) acting as a publisher may be received at network
node 104(a) acting as an Ingress Border Router (IBR), routed
through network node 104(5) acting as a Transit Router (TR),
and passed to end node 106(b) acting as a destination node
using network node 104(c) acting as an Egress Border Router
(EBR). As used herein, a border router may be a router on the
edge of an SDN domain that is connected to at least one node
outside of the SDN domain, the IBR may be defined as the
SDN border router that receives traffic from outside of the
SDN domain, and the EBR may be defined as the SDN border
router that sends traffic to outside of the SDN domain. The TR
may be defined as an SDN router that transports traffic within
the SDN domain and has no interfaces connected to outside of
the SDN domain. As will be apparent to those of skill in the
art, a single border router may function as an IBR, an EBR, or
both, depending on the traffic flow(s). The end nodes 106 may
be any network element configured to transmit, receive, origi-
nate, and/or terminate data, or, in alternate embodiments,
other networks, e.g., IP networks, MPLS networks, etc. The
network controller 102 may be a generalized network con-
troller configured to control the network nodes 104. The
network controller 102 may be any device configured to per-
form control path and/or control plane functionality, such as
drawing a network map and defining the information in a
routing table that defines how to route incoming packets. The
network controller 102 may be configured for management
and control functionality of the control plane, which may
include routing and resource management. The network
nodes 104 may include devices that receive and transmit data
through the network 100 according to a standard. Some of the
network nodes 104 may conform to a standard, e.g. Openflow.

The network controller 102 may receive data from and
transmit messages to the network nodes 104. Some of the
incoming messages or parts of the incoming messages may be
translated into a standard independent format for processing
by some of the modules in the network controller 102. The
standard independent format may be based on an abstract
network control data model that provides an abstraction of the
attributes or features of the various standard formats. The
network controller 102 may interact with the network nodes
104 via a variety of application programming interface (API)
protocols, e.g., Openflow. The network controller 102 may
determine the global network topology of the network 100.
With the global network topology, state information, dynamic
traffic flow/volume information, and other network state
information, the network controller 102 may make decisions

US 9,215,093 B2

5

on how to assign resources and route applications, informa-
tion, and/or data packet flows through the network 100.

FIG. 2 is a schematic diagram of an example embodiment
of'an NE 200 within an SDN, which may be a network node
104 in a network 100. In some embodiments, NE 200 may
also act as other node(s) inthe SDN. One skilled in the art will
recognize that the term NE encompasses a broad range of
devices of which NE 200 is merely an example. NE 200 is
included for purposes of clarity of discussion, but is in no way
meant to limit the application of the present disclosure to a
particular NE embodiment or class of NE embodiments. At
least some of the features/methods described in the disclosure
may be implemented in a network node, apparatus, or com-
ponent such as an NE 200. For instance, the features/methods
in the disclosure may be implemented using hardware, firm-
ware, and/or software installed to run on hardware. The NE
200 may be any device that transports data, e.g., packets,
frames, flows, and/or data streams, through a network, e.g.. a
switch, router, bridge, server, a client, etc. As shown in FIG.
2, the NE 200 may comprise transceivers (1x/Rx) 210, which
may be transmitters, receivers, or combinations thereof. A
Tx/Rx 210 may be coupled to a plurality of downstream ports
220 for transmitting and/or receiving frames from other
nodes, and a Tx/Rx 210 may be coupled to a plurality of
upstream ports 250 for transmitting and/or receiving frames
from other nodes, respectively. A processor 230 may be
coupled to the Tx/Rx 210 to process the frames and/or deter-
mine which nodes to send frames to. The processor 230 may
comprise one or more multi-core processors and/or memory
devices 232, which may function as data stores, buffers, etc.
Processor 230 may be implemented as a general processor or
may be part of one or more application specific integrated
circuits (ASICs) and/or digital signal processors (DSPs). Pro-
cessor 230 may comprise a content aware module 234, which
may provision content forwarding, content caching, and
interest processing in the SDN as discussed above. Processor
230 may also comprise a conference control module 235,
which may provide encapsulation and decapsulation func-
tions, including various levels of message header generation
and encapsulation functionality as described in methods 400
and 600, and/or path calculation functions as described in
process 800. In an alternative embodiment, the content aware
module 234 and/or conference control module 235 may be
implemented as instructions stored in memory 232, which
may be executed by processor 230. The memory module 232
may comprise a cache for temporarily storing content, e.g., a
Random Access Memory (RAM). Additionally, the memory
module 232 may comprise a long-term storage for storing
content relatively longer, e.g., a Read Only Memory (ROM).
For instance, the cache and the long-term storage may include
dynamic random access memories (DRAMs), solid-state
drives (SSDs), hard disks, or combinations thereof.

It is understood that by programming and/or loading
executable instructions onto the NE 200, at least one of the
processor 230, the cache, and the long-term storage are
changed, transforming the NE 200 in part into a particular
machine or apparatus, e.g., a multi-core forwarding architec-
ture, having the novel functionality taught by the present
disclosure. It is fundamental to the electrical engineering and
software engineering arts that functionality that can be imple-
mented by loading executable software into a computer can
be converted to a hardware implementation by well-known
design rules. Decisions between implementing a concept in
software versus hardware typically hinge on considerations
of stability of the design and numbers of units to be produced
rather than any issues involved in translating from the soft-
ware domain to the hardware domain. Generally, a design that

10

15

20

25

30

35

40

45

50

55

60

65

6

is still subject to frequent change may be preferred to be
implemented in software, because re-spinning a hardware
implementation is more expensive than re-spinning a soft-
ware design. Generally, a design that is stable that will be
produced in large volume may be preferred to be imple-
mented in hardware, for example in an ASIC, because for
large production runs the hardware implementation may be
less expensive than the software implementation. Often a
design may be developed and tested in a software form and
later transformed, by well-known design rules, to an equiva-
lent hardware implementation in an ASIC that hardwires the
instructions of the software. In the same manner as a machine
controlled by a new ASIC is a particular machine or appara-
tus, likewise a computer that has been programmed and/or
loaded with executable instructions may be viewed as a par-
ticular machine or apparatus.

Packets received by an SDN IBR may be encapsulated
using an SDN flow-specific header for transport and/or rout-
ing through the SDN. The encapsulating header may com-
prise a control field and a Flow ID field. Control field may be
used to describe a variety of characteristics, e.g., the length of
the encapsulating header, unicast or multicast transmission,
backup or primary path transmission, etc. The Flow ID may
be used to identify and/or distinguish one or multiple data
flows inside an SDN domain. The Flow ID may be allocated
either via an Implicit Method embodiment (e.g., relying on
lookup tables) or via an Explicit Method embodiment (e.g.,
expressly containing needed data), as discussed further
herein.

In order to encapsulate the new SDN header-encoded
packet over an Ethernet network, a new EtherType may be
assigned by the Internet Assigned Numbers Authority
(TANA). FIG. 3 is an example embodiment of an Ethernet
packet 300 including a disclosed SDN header. The Ethernet
packet 300 comprises an Ethernet field 302 using a new
EtherType (not depicted), a Virtual Local Area Network
(LAN) (VLAN) field 304, a new SDN packet header field
306, and a payload field 308, e.g., for transporting Address
Resolution Protocol (ARP)/IP/MPLS/MAC-encoded data.
Ethernet packets, including EtherType fields and other fields,
e.g., source MAC and destination MAC, are generally known
and those of ordinary skill will recognize permissible modi-
fications of Ethernet packet 300 in accordance with this dis-
closure.

FIG. 4 is an example embodiment of an SDN packet header
400, e.g., the SDN packet header field 306 of FIG. 3, gener-
ated according to the Implicit Method or Explicit Method of
this disclosure. SDN packet header 400 comprises a control
field 402 and a Flow ID field 404. The length control field 402
may differ, e.g., from a two-bit to four-bit field, and may
comprise information about the encapsulated data packet,
e.g., the length of the SDN header. In the Implicit Method, the
control field 402 may comprise bits 0-1 and may provide the
appropriate version value, explained below. In the Explicit
Method, the control field 402 may comprise bits 0-3, with bits
0-1 providing the appropriate version value, bit 2 providing a
backup flow flag, and bit 3 providing a multicast/unicast flag.

The Flow ID field 404 may be a variable length field for
storing a Flow ID allocated across the entire SDN domain by
an SDN controller, e.g., network controller 102 of FIG. 1. The
SDN controller may track Flow ID assignments using various
databases, e.g., a free Flow ID pool database (containing
unassigned Flow IDs) and an Assigned Flow ID Table data-
base. Anassigned Flow ID may be used to switch a flow based
on the Flow ID at a system router, e.g., network node 104 of
FIG. 1, using alocal switching table installed at each router by
the SDN controller. The local switching table is discussed

US 9,215,093 B2

7

further herein. The SDN controller may allocate and/or assign
a Flow ID such that a loop in the SDN network will not be
formed and packet delivery from the SDN IBR, e.g., network
node 104(a) of FIG. 1, to one or multiple SDN EBRs, e.g.,
network node 104(¢) of FIG. 1, is ensured so as to satisfy any
preset Service Level Agreement (SLA) requirements for the
delivery, e.g., Quality of Service (QoS), Traffic Engineering
(TE), etc. The length of the Flow ID may depend on the value
of' the bits in the control field indicating the protocol version
employed, e.g., IP version 4 (IPv4), IPv4 VPN, IP version 6
(IPv6), IPv6 VPN, Virtual Private LAN Service (VPLS), L2
VPN, Multi-Topology (MT), etc., and the method of flow
identification, e.g., Implicit Method or Explicit Method. For
example, the length of the Flow ID may vary according to
Table 1 below showing the version value and corresponding
length of SDN packet header and Flow ID:

TABLE 1

The Version Value and the Length of Header and Flow ID

Version 0 1 2 3
Total length of new SDN header 4 6 12 16
(Octets)

Total length of Flow ID (bits) 30 46 94 126
Implicit Method

Total length of Flow ID (bits) 28 44 92 124

Explicit Method

A Flow ID may be generated from a service request using
a Policy Component on the controller. The Policy Component
may convert different service requests to a set of tuples. A
tuple may be a single row of data from an ordered list of
elements. One default policy requirement may be best effort
service provision for the traffic, e.g., based on an analysis of
the traffic type and SDN EBR ID. For example, if two traffic
flows or data streams are of the same type and will pass
through an SDN network via the same SDN EBR, then the
Flow ID for both flows or data streams may be the same. A
more complicated policy may check additional or alternate
tuples ofthe traffic. An example set of tuples is listed below in
Table 2:

TABLE 2

Example tuple list for a Flow ID Policy (Implicit Method)

IBR ID

EBR ID

IBR__PORT

EBR__PORT

Network Abstraction, e.g., Table ID for VPN,

Topology (Topo) ID for MT

Traffic type, e.g., Unicast or multicast, L2 or L3, IPv4 or IPv6,

ATM or FR, time-division multiplexing (TDM), SONET, Synchronous
Digital Hierarchy (SDH), etc.

Traffic’s Source IP address (if IP traffic)

Traffic’s Destination IP address (if IP traffic)

Application’s information, Transmission Control Protocol (TCP) or
User Datagram Protocol (UDP), port number (if IP traffic)

Traffic’s MPLS label (if MPLS traffic)

Traffic’s Source MAC address (if Ethernet traffic)

Traffic’s Destination MAC address (if Ethernet traffic)

Traffic’s ATM virtual channel identifier (VCI)/virtual path

identifier (VPI) value (if ATM traffic)

Traffic’s FR data link connection identifier (DLCI)

value (if Frame Relay traffic)

Traffic’s Time-division multiplexing (TDM) time slot (if TDM traffic)
Traffic QoS requirement, such as bandwidth, rate, latency

Traffic TE requirement, such as explicit path information

Any other customer-required properties desired to describe the traffic flow

20

25

45

50

55

60

65

8

A Policy Component may utilize the service request to
obtain an applicable set of tuples. The applicable set of tuples
may be assigned to a Flow 1D, and consequently a network
node, e.g., network nodes 104 of FIG. 1, may use the Flow ID
to lookup the applicable set of tuples in a database provided
and/or populated by the controller. Table 3 shows various
services correlated with sets of tuples described in Table 2:

TABLE 3

Example sets of tuples for different services (Implicit Method)

Services Tuples

Best effort IP service

MPLS service without Class
of Service (COS)

Normal MAC service

L2/L.3 VPN service (no QoS)
IP service with Type of
Service (ToX)

MPLS service with COS
MAC service with QoS
Normal Tunnel Service

EBR__ID, Traffic type,
Network Abstraction (VPN table ID,
MT ID (Topo ID))

EBR__ID, Traffic type,

Network Abstraction (VPN table ID,
Topo ID)

QoS

EBR_ID, IBR_ID, EBR__PORT,
IBR__PORT, Traffic type,

Network Abstraction (VPN table ID,
Topo ID)

EBR_ID, IBR_ID, EBR__PORT,
IBR__PORT, Traffic type,

Network Abstraction (VPN table ID,
Topo ID)

QoS, TE

EBR__ID, Traffic type,

Network Abstraction (VPN table ID,
Topo ID)

QoS, Traffic-rate

EBR__ID, Traffic type,

Network Abstraction (VPN table ID,
Topo ID)

Destination Address,

Protocol, Port number

EBR__ID, Traffic type,

Network Abstraction (VPN table ID,
Topo ID)

Source Address, Protocol, Port number

TE Tunnel Service

Traffic Aware Routing

Application Aware Routing

Subscriber Aware Routing

FIG. 5 is a flowchart showing an example method 500 of
Flow ID assignment for an Implicit Method example embodi-
ment of packet header generation. At 502, a controller, e.g.,
network controller 102 of FIG. 1, may receive a service
request at a Service Request Component from a network
node, e.g., network node 104(a) of FIG. 1. The service request
may be generated from the network node when it receives a
packet from outside of SDN, e.g., network 100 of FIG. 1, but
the packet may not be forwarded after looking-up the for-
warding table. The service request may also be generated by
the configuration on the network node. The service request
may include the original data packet when a packet cannot be
forwarded or may include the destination information when
the service request is triggered by configuration. The service
request may also include other information related to the
service for the packet, e.g., QoS, receiving port, etc. At 504,
the Service Request Component may pass the service request
to a Policy Component on the controller. The Policy Compo-
nent may lookup a Flow ID associated with the flow from an
internal table. If no Flow 1D is identified, the controller may
obtain a set of tuples using the service request as described
above. The SDN controller may further allocate available
Flow IDs to different services. The controller may also utilize
various traffic properties for the flow to obtain the Flow ID. At
step 506, the controller may lookup a Flow ID from a table
using the set of tuples returned by the Policy Component. Ifan
assigned Flow ID is found in the table, the Flow ID may be

US 9,215,093 B2

9

returned and associated with the service request. If the con-
troller does not find an assigned Flow ID, a Flow ID, e.g., a
randomized number within a predefined range, from the free
Flow ID pool may be selected, returned, allocated, and asso-
ciated with the service request. At 508, the controller may
track Flow ID assignments, e.g., by inserting the Flow ID into
the Assigned Flow ID Table and/or removing the Flow 1D
from the free Flow ID pool database. The Assigned Flow ID
Table may contain all tuples used by a policy to describe a
dedicated traffic flow. Each Flow ID in either/both database
(s) may further comprise a count indicating how many times
a Flow ID is used, reused, or otherwise included in a packet
header. The Assigned Flow ID Table may be used for action
generation, e.g., for pushing and/or populating an Openflow
table in the SDN EBR and IBR. The Flow ID may be returned
to the Service Request Component for utilization in encapsu-
lation functionality. When the SDN controller receives notice
that aFlow ID is no longer in use, e.g., from a link down event,
a customer request, etc., at 510 the Flow 1D may be returned
to the Flow ID pool in the SDN controller.

FIG. 6 is an example embodiment of an SDN packet header
600, e.g., the SDN packet header field 306 of FIG. 3, gener-
ated according to the Explicit Method of this disclosure. SDN
packetheader 600 comprises a control field 602 and a Flow ID
field 604. The Flow ID field 604 may comprise three sub-
fields: EBR/Multicast Tree (MTree) ID field 606, Service
Class ID (SC ID) field 608, and Network Abstraction (Ne-
tAbs) field 610. The control field 602 may have a four-bit field
comprising the following information about the encapsulated
data packet: (i) the length of the SDN header (e.g., using bits
0 to 1); (ii) whether the encapsulated packet is a unicast or
multicast packet (e.g., using a binary flag bit 2); and (iii)
whether the encapsulated packet is comprised within a
backup protection flow (e.g., using a binary flag bit 3). Each
of the fields may be of fixed length for a particular Version
Value for the Flow ID, as illustrated in FIGS. 7-13. For
example, EBR/MTree ID field 606 may be 10 bits (bits 4 to
13), SCID field 608 may be 8 bits (bits 14 to 21), and NetAbs
field 610 may be 10 bits (bits 22 to 31). When the multicast bit
in control field 602 indicates a unicast transmission, EBR/
MTree ID field 606 may provide a unique ID for routing to an
SDN EBR. When the multicast bit in control field 602 indi-
cates a multicast and/or a broadcast transmission, the EBR/
MTree ID field 606 may indicate a multicast tree ID. In some
embodiments, a particular value may indicate broadcast. SC
1D field 608 may represent other factors desirable to distin-
guish traffic. The SC ID field 608 may be mapped from
information including (but not limited to): (a) IP differenti-
ated service bits; (b) MPLS Class of service bits; (¢) SLA
requirements, e.g., bandwidth, rate, latency; (d) application
types, e.g., TCP or Tag Distribution Protocol (TDP), port
number, etc.; (e) traffic source information, e.g., IBR_PORT,
source IP/MAC address, etc.; and (f) traffic destination infor-
mation, e.g., EBR_PORT, destination IP/MAC address, etc.
Since the space of SC ID may be fixed at a limited length,
some mapping or hashing function may be used to map any
factor to the SC ID. The SDN controller may optionally
decide the most efficient way to use the SC ID in order to
accommodate traffic differentiation. NetAbs field 610 may be
used atthe SDN EBR for further processing. The NetAbs field
610 may comprise two elements representing certain network
abstraction layer information: network abstraction type (Ne-
tAbsT) and network abstraction type ID (NetAbsID).
NetAbsT may be used to indicate the type of network abstrac-
tion in EBR for particular flows, such as .2 or L.3. NetAbsID
may be the network abstraction ID associated with the type,
e.g., atable or instance ID. The NetAbs field 610 values may

10

15

20

25

30

35

40

45

50

55

60

65

10

therefore indicate information including (but not limited to):
(a) traffic type and additional routing information, e.g., L.2
(and optionally, e.g., MPLS, TDM, ATM, FR, Ethernet, etc.),
L3 (and optionally, e.g., Forwarding Information Base (FIB)
for IPv4 or IPv6, Table ID of FIB for IPv4 VPN or IPv6 VPN,
VPLS instance ID for VPLS, etc.); and (b) whether the Topo
ID is present. When a Topo ID is used, version O of the
encapsulating header may not be used due to the space con-
straints of the NetAbsID. Versions 1 to 3 may have a Topo ID
size of 8, 12, and 16 bits, respectively. Example headers
including Topo IDs are illustrated below in FIGS. 9, 11, and
13. Table 4 shows example definitions of NetAbsT and cor-
responding definitions of NetAbsID:

TABLE 4
NetAbs definition:
NetAbsT NetAbsID
00000 L3 IPv4 Table ID
L3, IPv4 (Table ID O indicates global IPv4)
00001 L3 IPv6 Table ID
L3, IPv6 (Table ID O indicates global IPv6)
01xxx L3 Topo ID is present at upper 8, 12, 16 bits
L3, MT for ver. 1, 2, 3, respectively
01000 L3 Topo ID (upper 8, 12, 16 bits for ver. 1, 2, 3)
L3, IPv4, MT Remained bits for IPv4 Table ID, see FIG. 11
Does not apply to Version 0
01001 L3 Topo ID (upper 8, 12, 16 bits
L3, IPv6, MT for ver. 1, 2, 3, respectively)
Remained bits for IPv6 Table ID, see FIG. 11
Does not apply to Version 0
10000 MAC Table ID
L2, MAC
10001 VPLS Instance ID
L2, VPLS
10010 MPLS table ID
L2, MPLS
10011 ATM table ID
L2, ATM
10100 FR table ID
L2, FR
10101 TDM time slot table ID
L2, TDM
11xxx L2 Topo ID is present at upper 8, 12, 16
1.2, MT bits for version 1, 2, 3, respectively
11010 MPLS Topo ID (upper 8, 12, 16 bits for version
1.2, MPLS, MT 1, 2, 3, respectively)

Remained bits for MPLS Table ID, see FIG. 10
Does not apply to Version 0

Other values To Be Determined (TBD)

For the different versions of the generated encapsulating
SDN header, the allowed length for NetAbs field may differ
and consequently the maximum size of NetAbsID may differ.
As a result, the proper version of the new SDN header may be
selected to accommodate the extreme case. For example,
when the Multiple-topology is used, the version 0 of the new
SDN header may not be used since the space of NetAbsID
may be insufficient to embed the Topo ID.

The Policy Component may utilize the service request to
obtain an applicable set of tuples. The applicable set of tuples
may be assigned to a Flow 1D, and consequently a network
node, e.g., network nodes 104 of FIG. 1, may use the Flow ID
to lookup the applicable set of tuples, e.g., in an Explicit
Method Assigned Flow ID table. The Explicit Method
Assigned Flow ID table may be simpler than in the Implicit
Method Assigned Flow ID table since most of the traffic
information may be retrieved from the Flow ID itself. In some
Explicit Method example embodiments, each Flow ID may
comprise (a) a count to indicate how many times the Flow ID
is used; and (b) detailed service class information. Table 5
shows the set of tuples generated by Policy to construct the

US 9,215,093 B2

11
Flow ID for different services. In the table, NetAbsID
includes NetAbsT information. The example in Table 5
shows various services correlated with sets of tuples utilized
to construct the Flow ID:

TABLE §

Example sets of tuples for different services (Explicit Method)

Service Tuples to construct the Flow ID

Best effort IP service
MPLS service without
COS

Normal MAC service
L2/L3 VPN service

EBR__ID, NetAbsID

(no QoS)

IP service with Type EBR_ID,

of Service (TOS) SC__ID (mapping from TOS/COS/QOS),

MPLS service with NetAbsID

CcOs

MAC service with QoS

Normal Tunnel EBR_ID,

Service SC__ID(mapping from IBR__ID, IBR_ PORT),
NetAbsID

TE Tunnel Service EBR_ID,

SC__ID (mapping from IBR__ID, IBR_ PORT,
EBR__PORT and QoS),

NetAbsID

Traffic Aware EBR_ID,

Routing SC__ID(mapping from Traffic-rate, QoS),
NetAbsID

Application Aware EBR_ID,

Routing SC__ID (mapping from Traffic destination
info: e.g., address, protocol, port number),
NetAbsID

Subscriber Aware EBR_ID,

Routing SC__ID (mapping from Traffic source info:
e.g., address, protocol, port number),

NetAbsID

FIG. 7 is an example embodiment of an SDN packet header
700, e.g., the SDN packet header field 600 of FIG. 6, gener-
ated according to the Explicit Method of'this disclosure using
the version value 0 from Table 1, supra. The fields in SDN
packet header 700 may be substantially the same as the cor-
responding fields in SDN packet header 600 except as noted.
The SDN packet header 700 may have a total length of four
octets. The EBR/MTree ID field 706 may be 10 bits, from bit
4 to bit 13, with the multicast bit clear for the EBR ID and the
multicast bit set for the MTree ID. The SC ID field 708 may
be 8 bits, from bit 14 to bit 21. The NetAbsT field 712 may be
5 bits, from bit 22 to bit 26. The NetAbsID field 714 may be
5 bits, from bit 27 to bit 31. The NetAbsT field 712 together
with the NetAbsID field 714 may correspond to the NetAbs
field 610 of FIG. 6.

FIG. 8 is an example embodiment of an SDN packet header
800 (without Topo ID), e.g., the SDN packet header field 600
of FIG. 6, generated according to the Explicit Method of this
disclosure using the version value 1 from Table 1, supra. The
fields in SDN packet header 800 may be substantially the
same as the corresponding fields in SDN packet header 600
except as noted. The SDN packet header 800 may have a total
length of six octets. The EBR/MTree ID field 806 may be 14
bits, from bit 4 to bit 17, with the multicast bit clear for the
EBR ID and the multicast bit set for the MTree ID. The SC ID
field 808 may be 10 bits, from bit 18 to bit 27. The NetAbsT
field 810 may be 5 bits, from bit 28 to bit 32. The NetAbsID
field 812 may be 15 bits, from bit 33 to bit 47. The NetAbsT
field 810 together with the NetAbsID field 812 may corre-
spond to the NetAbs field 610 of FIG. 6.

FIG. 9 is an example embodiment of an SDN packet header
900 (with Topo ID), e.g., the SDN packet header field 600 of

10

15

20

25

30

35

40

45

50

60

65

12

FIG. 6, generated according to the Explicit Method of this
disclosure using the version value 1 from Table 1, supra. The
fields in SDN packet header 900 may be substantially the
same as the corresponding fields in SDN packet header 800
except as noted. SDN packet header 900 may further include
a Topo ID field 914, described under FIG. 6, between the
NetAbsT field 910 and the O_NetAbsID field 912. The
O_NetAbsID field 912 may be another NetAbsID field for
storing another NetAbsID.

FIG. 10 is an example embodiment of an SDN packet
header 1000 (without Topo ID), e.g., the SDN packet header
field 600 of FIG. 6, generated according to the Explicit
Method of this disclosure using the version value 2 from
Table 1, supra. The fields in SDN packet header 1000 may be
substantially the same as the corresponding fields in SDN
packet header 600 except as noted. The SDN packet header
1000 may have a total length of 12 octets. The EBR/MTree ID
field 1006 may be 28 bits, from bit 4 to bit 31, with the
multicast bit clear for the EBR ID and the multicast bit set for
the MTree ID. The SC ID field 1008 may be 32 bits, from bit
32 to bit 63. The NetAbsT field 1010 may be 5 bits, from bit
64 to bit 68. The NetAbsID field 1012 may be 27 bits, from bit
69 to bit 95. The NetAbsT field 1010 together with the NetAb-
sID field 1012 may correspond to the NetAbs field 610 of
FIG. 6.

FIG. 11 is an example embodiment of an SDN packet
header 1100 (with Topo ID), e.g., the SDN packet header field
600 of FIG. 6, generated according to the Explicit Method of
this disclosure using the version value 2 from Table 1, supra.
The fields in SDN packet header 1100 may be substantially
the same as the corresponding fields in SDN packet header
1000 except as noted. SDN packet header 1100 may further
include a Topo ID field 1114, described under FIG. 6,
between the NetAbsT field 1110 and the O_NetAbsID field
1112. The O_NetAbsID field 1112 may be another NetAbsID
field for storing another NetAbsID.

FIG. 12 is an example embodiment of an SDN packet
header 1200 (without Topo ID), e.g., the SDN packet header
field 600 of FIG. 6, generated according to the Explicit
Method of this disclosure using the version value 3 from
Table 1, supra. The fields in SDN packet header 1200 may be
substantially the same as the corresponding fields in SDN
packet header 600 except as noted. The SDN packet header
1200 may have a total length of 16 octets. The EBR/MTree ID
field 1206 may be 28 bits, from bit 4 to bit 31, with the
multicast bit clear for the EBR ID and the multicast bit set for
the MTree ID. The SC ID field 1208 may be 48 bits, from bit
32 to bit 79. The NetAbsT field 1210 may be 5 bits, from bit
80 to bit 84. The NetAbsID field 1212 may be 43 bits, from bit
85 to bit 127. The NetAbsT field 1210 together with the
NetAbsID field 1212 may correspond to the NetAbs field 610
of FIG. 6.

FIG. 13 is an example embodiment of an SDN packet
header 1300 (with Topo ID), e.g., the SDN packet header field
600 of FIG. 6, generated according to the Explicit Method of
this disclosure using the version value 3 from Table 1, supra.
The fields in SDN packet header 1200 may be substantially
the same as the corresponding fields in SDN packet header
1200 except as noted. SDN packet header 1300 may further
include a Topo ID field 1314, described under FIG. 6,
between the NetAbsT field 1310 and the O_NetAbsID field
1312. The O_NetAbsID field 1312 may be another NetAbsID
field for storing another NetAbsID.

FIG. 14 is a flowchart showing an example method 1400 of
Flow ID assignment for an Explicit Method example embodi-
ment of packet header generation. The steps of method 1400
may be substantially the same as the steps of method 500

US 9,215,093 B2

13

except as indicated below. At 1402, a controller, e.g., network
controller 102 of FIG. 1, may receive a service request at a
Service Request Component from a network node, e.g., net-
work node 104(a) of FIG. 1. The service request may be
generated from the network node when it receives a packet
from outside of SDN, e.g., network 100 of FIG. 1, but the
packet may not be forwarded after looking-up the forwarding
table. The service request may also be generated by the con-
figuration on the network node. The service request may
include the original data packet when a packet cannot be
forwarded or may include the destination information when
the service request is triggered by configuration. The service
request may also include other information related to the
service for the packet, e.g., QoS, receiving port, etc. At 1404,
the Service Request Component may pass the service request
to a Policy Component on the controller. The Policy Compo-
nent may construct a Flow ID from a table using a set of tuples
and the information contained in the service request. At step
1406, the Policy Component may lookup a Flow ID associ-
ated with the flow from an internal table. If an assigned Flow
ID is found in the table, the Flow ID may be returned and
associated with the service request. If no Flow ID is identi-
fied, the controller may construct a Flow ID using the set of
tuples and service request information as described above. At
1408, the controller may track Flow ID assignments, e.g., by
inserting the Flow 1D into the Assigned Flow ID Table. The
Flow ID may be returned to the Service Request Component
for utilization in encapsulation functionality. When the SDN
controller receives notice that a Flow ID is no longer in use,
e.g., from a link down event, a customer request, etc., at 1410,
the Flow ID may be deleted from the Flow ID table at the SDN
controller.

FIG. 15 is a protocol diagram showing a process 1500 for
an SDN controller to establish a mechanism for encoding
packets for transport over the SDN network in accordance
with encapsulation methods disclosed above. The compo-
nents depicted in FIG. 15 may be substantially the same as the
components of FIG. 1 except as otherwise noted below. At
1502, controller 102 may collect the topological information
for the SDN network, e.g., network 100 of FIG. 1. At 1504,
controller 102 may assign a unique node 1D to each network
node 104, e.g., an EBR ID, an IBR ID, a transit node ID, etc.
At 1506, the controller 102 may collect routing information
from each network node 104, e.g., routing protocol packets,
load, bandwidth, etc. The routing protocol may be configured
for any router. The routing protocol packet processing may be
distributed on each network node or centralized on SDN
controller. As will be understood to those of skill in the art,
such collection may be periodic or continuous. At 1508, net-
work node 104(a) may function as an IBR and may receive a
packet from an external node (not pictured) and may search a
designated forwarding/switching table. Upon failure to find
an associated table entry, network node 104(a) may generate
a service request and may send the service request to the SDN
controller 102. At 1510, the controller 102 may assign a Flow
1D, e.g., using the Implicit Method or Explicit method, and
may calculate the best path for routing traffic through the
SDN, for example, from an IBR, e.g., network node 104(a), to
an EBR, e.g., network node 104(c), via a TR, e.g., network
node 104(b). This calculation may occur according to one or
more service requirements. The controller 102 may calculate
the best path using a known mechanism, e.g., SPF, con-
strained SPF (CSPF) with one or more desired constraints,
e.g., TE, QoS, etc. At 1512, the controller 102 may install the
lookup and/or forwarding tables at the network nodes 104. At
1514, network node 104(a) may utilize the data sent by the
SDN controller 102 to encapsulate the packet that cannot be

20

25

30

35

40

45

55

14

forwarded and triggered the service request. At 1516, the
network node 104(a) may send the packet along the path
calculated by the SDN controller 102, e.g., via transit node
104(5) to EBR 104(c), which node may then decapsulate the
packet and forward the packet along to a node outside of the
SDN. At 1508, if the lookup for the received packet can find
anentry in the designated forwarding table, the packet may be
encapsulated with the information inside the forwarding/
switching table entry, and may be sent to the next hop of the
network node along the path. In all transit nodes, the packet
may be forwarded by looking up the packet using its SDN
header which was encapsulated at the IBR.

At least one embodiment is disclosed and variations, com-
binations, and/or modifications of the embodiment(s) and/or
features of the embodiment(s) made by a person having ordi-
nary skill in the art are within the scope of the disclosure.
Alternative embodiments that result from combining, inte-
grating, and/or omitting features of the embodiment(s) are
also within the scope of the disclosure. Where numerical
ranges or limitations are expressly stated, such express ranges
or limitations should be understood to include iterative ranges
or limitations of like magnitude falling within the expressly
stated ranges or limitations (e.g., from about 1 to about 10
includes, 2, 3, 4, etc.; greater than 0.10 includes 0.11, 0.12,
0.13, etc.). For example, whenever a numerical range with a
lower limit, R,, and an upper limit, R, is disclosed, any
number falling within the range is specifically disclosed. In
particular, the following numbers within the range are spe-
cifically disclosed: R=R +k*(R,-R,), wherein k is a variable
ranging from 1 percent to 100 percent with a 1 percent incre-
ment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5
percent, ... 50 percent, 51 percent, 52 percent, . . ., 95 percent,
96 percent, 97 percent, 98 percent, 99 percent, or 100 percent.
Moreover, any numerical range defined by two R numbers as
defined in the above is also specifically disclosed. The use of
the term about means+10% of the subsequent number, unless
otherwise stated. Use of the term “optionally” with respect to
any element of a claim means that the element is required, or
alternatively, the element is not required, both alternatives
being within the scope of the claim. Use of broader terms such
as comprises, includes, and having should be understood to
provide support for narrower terms such as consisting of,
consisting essentially of, and comprised substantially of. All
documents described herein are incorporated herein by ref-
erence.

While several embodiments have been provided in the
present disclosure, it should be understood that the disclosed
systems and methods might be embodied in many other spe-
cific forms without departing from the spirit or scope of the
present disclosure. The present examples are to be considered
as illustrative and not restrictive, and the intention is not to be
limited to the details given herein. For example, the various
elements or components may be combined or integrated in
another system or certain features may be omitted, or not
implemented.

In addition, techniques, systems, subsystems, and methods
described and illustrated in the various embodiments as dis-
crete or separate may be combined or integrated with other
systems, modules, techniques, or methods without departing
from the scope of the present disclosure. Other items shown
ordiscussed as coupled or directly coupled or communicating
with each other may be indirectly coupled or communicating
through some interface, device, or intermediate component
whether electrically, mechanically, or otherwise. Other
examples of changes, substitutions, and alterations are ascer-
tainable by one skilled in the art and could be made without
departing from the spirit and scope disclosed herein.

US 9,215,093 B2

15

What is claimed is:

1. An ingress node in a Software Defined Network (SDN)
comprising:

areceiver for receiving a data packet from outside the SDN,

wherein the data packet is part of a flow;

a transmitter; and

a processor coupled to the receiver and the transmitter,

wherein the processor is configured to:

generate a service request comprising tuples indicating a
policy for a service to be applied to the flow;
cause the transmitter to transmit the service request to

a SDN controller;

receive, via the receiver, a Flow identifier (ID) corre-
sponding to the tuples such that the Flow ID indicates
the policy for the service to be applied to the flow;

obtain the data packet from the receiver;

encapsulate the data packet in an SDN packet header
comprising the Flow ID from the SDN controller to
cause the data packet to be treated according to the
policy; and

cause the transmitter to transmit the encapsulated data

packet across the SDN toward an egress node in the
SDN.
2. The ingress node of claim 1, wherein the ingress node is
further configured to apply a plurality of policies to a plurality
of flows encoded with different traffic protocols by describing
the policies as tuples.
3. The ingress node of claim 1, wherein the SDN packet
header is removable by the egress node prior to transmission
to a final destination, wherein the final destination is attached
to the egress node or is attached to a remote SDN domain.
4. The ingress node of claim 1, wherein the SDN packet
header comprises a field for identifying at least one packet-
specific property and a field for identifying the flow.
5. The ingress node of claim 4, wherein the packet-specific
property comprises a packet header length.
6. The ingress node of claim 4, wherein the field for iden-
tifying the flow comprises at least one of an egress node
identification, a service class identification, or a network
abstraction identification.
7. In a network node of a Software Defined Network
(SDN), a method of routing a packet comprising:
receiving a first data packet from a first flow and a second
data packet from a second flow, wherein the first data
packet and the second data packet are encoded using
different traffic protocols, encoded using a common traf-
fic protocol with different source or destination
addresses, or encoded using the common traffic protocol
with different policy requirements;
transmitting, to a SDN controller, one or more service
requests comprising a first set of tuples indicating a first
policy for a first service to be applied to the first flow and
a second set of tuples indicating a second policy for a
second service to be applied to the second flow;

receiving, from the SDN controller, a first Flow identifier
(ID) corresponding to the first set of tuples and a second
Flow ID corresponding to the second set of tuples such
that the Flow IDs indicate the policies for the services to
be applied to the first flow and the second flow;

encapsulating the first data packet and the second data
packet using a packet header specific to a SDN domain
of the SDN, wherein each packet header comprises a
field for identifying at least one packet-specific property
and a field for encoding an associated Flow ID to cause
the first data packet to be treated according to the first
policy and the second data packet to be treated according
to the second policy; and

10

15

20

25

30

35

40

45

50

55

60

65

16

transmitting the encapsulated first data packet and the
encapsulated second data packet across a single SDN
domain to a receiving node.

8. The method of claim 7, wherein the packet-specific
property comprises a packet header length, a unicast or mul-
ticast packet transmission, or a primary or backup flow packet
transmission.

9. The method of claim 7, and wherein the field for encod-
ing the associated Flow ID comprises at least one of an egress
node identification, a service class identification, or a network
abstraction identification.

10. The method of claim 9, wherein the packet header size
is 4, 6, 12, or 16 octets.

11. The method of claim 7, wherein each data packet is
encapsulated for single layer stack transmission across the
SDN.

12. The method of claim 7, wherein the first data packet and
the second data packet are encoded using different traffic
protocols, and wherein the different traffic protocols are pro-
tocols comprising one of a Media Access Control (MAC), an
Internet Protocol (IP), a Multiprotocol Label Switching
(MPLS), an Asynchronous Transfer Mode (ATM)/Frame
Rate (FR), or a Synchronous Optical Networking (SONET).

13. The method of claim 7, wherein the receiving node is an
SDN egress node, and wherein the packet header is config-
ured to be removable by the receiver receiving node prior to
transmission to a final destination.

14. The method of claim 7, wherein the receiving node is
not an SDN egress node.

15. A computer program product comprising computer
executable instructions stored on a non-transitory medium
that when executed by a processor cause the processor to:

receive a first data packet from a first flow and a second data

packet from a second flow, wherein the first data packet
and the second data packet are encoded using different
traffic protocols, using a common traffic protocol with
different source or destination addresses, or using the
common traffic protocol with different policy require-
ments;

transmit, to a Software Defined Network (SDN) controller,

one or more service requests indicating a first service to
be applied to the first flow and a second service to be
applied to the second flow;

receive, from the SDN controller, a first Flow identifier

(ID) that indicates a first policy to be applied to the first
flow based on the first service and a second Flow ID that
indicates a second policy to be applied to the second flow
based on the second service;

encapsulate the first data packet with a first packet header

comprising the first Flow ID and encapsulate the second
data packet with a second packet header comprising the
second Flow ID; and

transmit the encapsulated first data packet and the encap-

sulated second data packet across a single SDN domain
in the SDN toward an egress node in the SDN, wherein
each packet header comprises a field for identifying at
least one packet-specific property and a field for encod-
ing an associated Flow ID to cause the first data packet to
be treated according to the first policy and the second
data packet to be treated according to the second policy.

16. The computer program product of claim 15, wherein
each packet header is configured for single layer stack trans-
mission across the SDN.

17. The computer program product of claim 15, wherein
the packet header size is 4, 6, 12, or 16 octets.

18. The computer program product of claim 15, wherein
the packet-specific property comprises a packet length, a

US 9,215,093 B2
17

unicast or multicast packet transmission, or a primary or
backup flow packet transmission.

19. The computer program product of claim 18, wherein
the field for encoding the associated Flow ID comprises at
least one of an egress node identification, a service class 5
identification, or a network abstraction identification.

20. The computer program product of claim 15, wherein
the packet headers are configured to be removable by the
egress node prior to transmission to a final destination.

#* #* #* #* #* 10

18

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,215,093 B2 Page 1 of 1
APPLICATION NO. : 14/043048

DATED : December 15, 2015

INVENTORC(S) : Lin Han et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

IN THE CLAIMS
Column 16, Claim 9, Line 9 should read:

The method of claim 7, wherein the field for encoding the associated Flow ID comprises at least one
of an egress node identification, a service class identification, or a network abstraction identification.

Column 16, Claim 13, Line 26 should read:

The method of claim 7, wherein the receiving node is an SDN egress node, and wherein the packet
header is configured to be removable by the receiving node prior to transmission to a final destination.

Signed and Sealed this
Twelfth Day of April, 2016

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

